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A steady nonlinear dispersive wave theory is developed in terms of three 
important invariants of channel flow: discharge, energy, and momentum flux. 
As such, the work is an extension of Benjamin & Lighthill’s approach for 
rectangular channels. 

Considering the differential equation obtained, we examine the behaviour of 
flows and wave systems in arbitrary channels for changes of energy and 
momentum. In particular, the bore problem is studied, and previous approaches 
to this problem, using linear wave theory, are seen to be invalid. The present 
theory describes several phenomena of open-channel flow, explains a scatter in 
previously obtained experimental results, and enables simple design recom- 
mendations to be made for channels in which stationary or moving bores are 
expected. 

While this work does describe the variation of physical quantities across the 
channel section, there are some important three-dimensional phenomena, noted 
experimentally, which remain unexplained. 

1. Introduction 
The study of surface gravity waves in channels of arbitrary uniform cross-sec- 

tion has followed a path similar to the classical studies of waves in rectangular 
channels, of which it is a generalization. The basic equations of motion are the 
same, while the boundary conditions and three-dimensional effects do not unduly 
complicate the problem, to first order at least. 

Kelland (Kelland 1839; Lamb 1932, $169) obtained the speed of propagation 
of infinitesimal long waves co = (gA,/B,)*, where g is the gravitational accelera- 
tion and A, is the cross-sectional area occupied by the undisturbed liquid, having 
width B, a t  the surface. The ratio A,/B,, the ‘hydraulic mean depth’, recurs 
frequently in all studies of wave motion in non-rectangular channels; simple as 
the concept may be, it appears to be the fundamental length scale which is crucial 
in all studies of fluid motion in these channels. In  rectangular channels of depth h, 
Kelland’s result reduces to the well-known expression obtained from simple tidal 
theory, co = (gh)*. 

From here, studies diverge into the two standard nineteenth-century 
approaches for water waves. The study of infinitesimal waves, which allows the 
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equations of motion to be linearized, but which makes no restriction on the 
velocity distribution, was initiated by Rayleigh (Rayleigh 1876; Lamb 1932, 
§ 233, 0 252) to obtain exact dispersion relationships connecting the wave speed 
with wavelength for waves in rectangular channels. Solutions for non-rectangular 
channels have only been obtained for some special cases (Lamb 1932, $261).  

The other approach is the study of disturbances which are propagated by fluid 
motions in which the pressure distribution is hydrostatic, giving no dispersion, 
while the nonlinear effects can be incorporated exactly. Lamb (1932, 8 187) gives 
the solution for rectangular channels. For arbitrary channels, Escoffier (Escoffier 
& Boyd 1962) obtained the exact solution, showing that disturbances involving 
a local area of cross-section A and surface width B are propagated a t  a velocity 
relative to the fluid of c = (gA/B)*. We see that, since A / B  (the local hydraulic 
mean depth) is an increasing function of height, there is a tendency for the wave 
to steepen, eventually forming a bore, as obtained by Airy for rectangular 
channels. 

For disturbances in which nonlinearity and dispersion are both small but 
k i t e  (a sort of intersection of the above two theories), Korteweg & de Vries 
(1895) obtained an equation governing unsteady motion in rectangular channels. 
When the two effects balance one another, we have steady motion, for which the 
surface takes on a en2 form, giving ‘cnoidal’ waves, or, for the appropriate 
boundary condition, a solitary wave. Peregrine (1968) and Shen (1969) have 
obtained the equivalent unsteady equation for channels of arbitrary cross- 
section. Peters (1966), meanwhile, had obtained equations for the solitary wave 
in such channels, but where the flow was not necessarily irrotational, and Shen 
(1968) had obtained the unsteady equations for the case of stratified flow. 

Experimental studies have been carried out by Sandover & Taylor (1962), 
Peregrine (1969) and by Benet & Cunge (1971). Peregrine’s experiments on 
solitary waves in trapezoidal channels verified the results of his theory; the other 
workers carried out their experiments on bores in model and full-scale trapezoidal 
channels. These reports include (i) observations of curved wave crests when 
viewed along the channel; (ii) a greater tendency for the waves to break at 
the sides of the channel than for the rectangular case; and (iii) extra three- 
dimensional effects, which include curvature of the wave crest in plan, a tendency 
for the waves to be unsteady, and a marked ‘fish-tail’ pattern which obscured 
the main wave system for wide shallow channels. Benet & Cunge noticed a wide 
scatter in results. 

In  a study of bores in rectangular channels, Lemoine (1948) used a linear wave 
theory in an attempt to relate the energy loss at  an undular bore to the waves 
created, and to  use this theory to describe experimental results of Favre (1935). 
Benjamin & Lighthill (1954) demonstrated the invalidity of such a linear theory, 
showing that a nonlinear dispersive wave theory is more valid, and applied such 
a theory t o  the bore problem in a rectangular channel, showing that the waves 
downstream of an undular bore are cnoidal in nature. In  the process they pro- 
vided an explanation of the scatter of Pavre’s results as being due to the 
variability of energy loss a t  the bore. 

Preissmann & Cunge (1967) used a linear theory similar t o  that of Lemoine, 
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but generalized to include trapezoidal channels; Benet & Cunge (1971) have 
applied this theory to their field and experimental observations. They obtained 
a scatter of experimental results, similar to that of Favre. 

The present work sets out to examine steady nonlinear dispersive waves in 
channels of arbitrary cross-section, generalizing the workof Benjamin & Lighthill, 
whose analysis and discussion it closely follows. 

In  $ 2  we briefly consider existing steady wave theories. Linearized theories 
are examined, and it is shown that these are not applicable to the waves behind 
undular bores. 

In $ 3  we produce an expansion scheme, which, when substituted into the 
equations of motion, enables nonlinear dispersive solutions to be obtained. The 
difference between the present work and previous approaches is that the solutions 
are obtained in terms of the channel flow quantities: discharge, energy, and 
momentum flux. A differential equation is obtained, and is solved to give the 
equations for cnoidal waves in channels of any cross-section, in terms of the flow 
invariants and certain geometrical parameters of the cross-section, including the 
solution of a Neumann problem on the undisturbed cross-section of the channel. 

Pinally, in $4 we examine the physical implications of the differential equation. 
Energy and momentum changes to uniform flows are seen to be able to produce 
wave systems, and this is applied to the case of a bore. We see that if there were 
no losses at  the bore then we could only obtain a solitary wave; if we have the 
full energy loss associated with a hydraulic jump then we have uniform 
subcritical flow and can have no waves. When the energy loss at the bore is 
intermediate between these two extremes we expect a train of cnoidal waves, 
completely defined by the energy loss. In  this way we explain the scatter of results 
found by Benet & Cunge: it is due to a variable energy loss at the bore, as was 
found by Benjamin & Lighthill for rectangular channels. The present theory is 
able to give some simple design recommendations for non-rectangular channels, 
for it shows that the highest wave possible, defining the necessary depth of 
channel, is the solitary wave. 

This work does provide evaluations of the change of surface elevation across 
the channel, and as such, constitutes a three-dimensional theory. To the order 
of accuracy obtained, however, the theory provides no explanation of the more 
complicated three-dimensional effects noted in the experimental reports of 
Peregrine and Sandover & Taylor. 

2. Equations of motion and some solutions 
2.1. Equations of motion 

Consider a steady wave system in a uniform channel of arbitrary cross-section. 
By superimposing a velocity on the system we have a train of stationary waves 
under which we have a steady flow, assumed to be incompressible, inviscid and 
irrotational. We set up a co-ordinate system (a, y,x) in which the waves are 
stationary: x is the direction of flow, y is vertically upwards and x is horizontal, 
perpendicular to the flow direction. The origin is a t  the channel invert, such that 
the maximum depth over the undisturbed cross-section is h. 

27-2 
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We can define a velocity potential $(x, y, z )  because the flow is irrotational. 
As it is incompressible as well, we have 

which holds throughout the flow. 

boundaries is 

on the solid boundaries, where n is the outward normal to the curve specified by 
the intersection of the channel bottom with the y, x plane. 

Fluid particles on the free surface remain on the free surface, giving the 
kinematic condition 

The kinematic condition that flow does not pass through the channel 

a#/an = 0 (2.2) 

(2.3) 

on y = ~ ( x ,  z ) ,  the free surface. We must also have zero pressure on this surface, 
giving the dynamic condition 

where R is the energy per unit mass, which, in the'absence of losses, is a constant 
throughout the flow; g is the gravitational acceleration. 

Equations (2.1)-(2.4) constitute a system for which solutions for the dependent 
variables $(x,y,x) and y ( x , x )  may be sought. At this stage we define three 
physical quantities which must be constant throughout the flow, and in terms 
of which we shall subsequently obtain solutions. These are Q, the volume flow 
rate at any cross-section; R, the energy per unit mass a t  any point, equal to that 
defined in (2.4); and S ,  the momentum flux (including transfer by pressure and 
by convection) at  any cross-section divided by the density p. Thus, 

where A refers to the region of integration, which is the entire cross-section of 
fluid a t  each section, and ~ ( x ,  y,x) is the pressure a t  any point. Each quantity 
Q,  R and X must be independent of the cross-section chosen if viscous effects and 
other losses are neglected. 

2.2. Existing solutions 

Lamb (1932, $260) gives a linearized solution of (2.1)-(2.4). This solution is in 
terms of a mixed boundary-value problem on a constant domain-the cross- 
section of flow to which the wave system is a small disturbance. Analytical 
solutions to this problem have been obtained for some special cases only. Solu- 
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tions for isosceles triangles, with angles of in- and $n- at the bottom vertex are 
given in Lamb (1932,s 261), whilepreissmann & Cunge (1967) obtainednumerical 
results for trapezia. 

The opposite case to this, where the wave amplitude is finite, but where the 
wavelength is so long that dispersion effects can be ignored, has been studied by 
Escoffier (Escoffier & Boyd 1962). The wave speed is an increasing function of 
wave height, thus we have a gradual steepening of waves of elevation until 
a discontinuity occurs. 

By analogy with waves in rectangular channels, we may show that dispersive 
effects are proportional to (Ao/hB,)2 and that nonlinear effects are measured by 
aB,/A,, where A ,  is the undisturbed cross-sectional area of flow, B, is the breadth 
at  the undisturbed water surface, and where h and a are the wavelength and 
amplitude respectively. For a rectangular channel, the ratio A,/B, is equal to the 
depth; for channels of arbitrary cross-section, A,/B, is the effective depth. 

Obtaining the ratio of nonlinear t o  dispersive effects, we see that this is 
measured by ah2/(A,/B,)3. For linearized theory to apply to any situation, 
a/(A,/B,) must be small, and ah2/(A,/B,)3 must be small as well. Where waves 
are long, the ratio uA~/(A,/B,)~ must be large. In cases where this ratio is of order 
unity, we obtain steady finite waves, where the steepening tendency is balanced 
by the dispersion effects. For this situation we expect to obtain waves having 
a form similar to cnoidal and solitary waves in rectangular channels. 

In  the linear theory of Preissmann & Uunge (1967)) wavelengths and ampli- 
tudes of undulations behind bores in trapezoidal channels are given. On calcu- 
lating values of the ratio uA~/(A,/B,)~ from these results, we find that it varies 
between 4 and 23, showing the incorrectness of neglecting nonlinear effects. 
A nonlinear theory for undular bores is therefore required; we proceed to a theory 
in which both nonlinear and dispersive effects are finite but small, and are of the 
same order of magnitude. The order of accuracy is recognized throughout. 

3. Steady nonlinear dispersive waves 
3.1. Porrnation of digerential equation 

Now we consider the combined effects of dispersion and nonlinearity by writing 
an expansion for 4, the velocity potential, in which both are included. Thus we 
may write 

in which the f(x) incorporates all nonlinear effects, for which we subsequently 
expand in terms of amplitude, and the P,(y, z) ,  n = 1,2, . . . , give the variation 
over the cross-section, the nth-order dispersion term. 

As this equation is to be truncated, and we wish to know the order of approxi- 
mation throughout the analysis, we scale the independent variables : 

(3.1) d = f(x) - G(Y, z)f”(4 + P2(Y, z)f’”(x) - * * * 9 

x1 = x / l ,  y1 = y/h,  x1 = Z/h, (3-2) 

in which b is a measure of the longitudinal extent of each wave and h is the 
maximum depth of liquid over the cross-section with an undisturbed free surface, 
the y co-ordinate of this surface with the origin at the channel invert. Because we 
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have non-dimensionalized both y and x with respect to this, we limit our attention 
to channels which are not notably broad, having maximum depth the same order 
of magnitude as the width. In  the previous sections we have seen that A,/B, is 
a more characteristic dimension of the cross-section, however, in the equations 
of motion and the dependent variables we find that it is more convenient to use 
the physical dimension h. 

We now expand the dependent variables: 

f(4 = lco(x, + %(%) + s24a(X1) + 0 ( E 3 ) ) ,  (3.3) 

where c, is the wave speed of infinitesimal long waves and E = a/h is the dimen- 
sionless wave amplitude, 

and 

Substituting (3.3) and (3.4) into the original expansion (3.1) gives 

P,(Y, 4 = h2V(Yl, 21) 

~ ( x ,  2) = h( 1 + cql(x1, ~ 1 )  + E ~ T ~ ( X ~ , Z ~ )  + o(s3))- 

9 = zc,(x, + sq, + E 2 q 2  - erzv(y,, XI) 41;) + o(e3, w, 6 F 4 ) ,  

(3.4) 

(3.5) 

(3.6) 

where a = h/l. 
In  5 2 we saw that, for steady nonlinear dispersive waves, ah2/(A,/B0)3 = O( l) ,  

thus for channels in which hB,/A, = O(1) we have e/vz = 0 ( 1 ) ,  and the €2 and 
sc2 terms in (3.6) are to be taken as being of the same order. Similarly all the 
error terms in (3.6) are of the same order: we group them and subsequently show 
the error term only in powers of 6. In  the retained terms, however, we must 
continue to distinguish between s and s2. 

Substituting these expansions for the dependent variables into the equations 
of motion, we group the terms according to order and obtain the following. 

Laplace’s equation (2. 1), for incompressibility and irrotationality, gives 

a2v a2v -+- = 1 atorders, 
ay: 22; (3.7) 

to be satisfied in the undisturbed channel cross-section, non-dimensionalized in 
each co-ordinate direction with respect to h. Thus the upper boundary is at  
y1 = 1 and is of width b, = Bo/h, and the domain has cross-sectional a,rea 
a, = Ao/h2. The boundary condition on the solid boundary (2.2) gives 

aV/an, = 0 at order &, (3.8) 

On the surface y1 = 1, we obtain from the kinematic boundary condition (2.3) 

a24 av 
ax, ax; ag, 
~ + - ‘ - - ( l , z , )  = O  atorderas, 

while the dynamic surface boundary condition (2.4) gives, on yl = 1, 

(3.9) 

(3.10) 



Cnoidal waves and bores in uniform channels 423 

In (3.3) we have defined the q,, n = 1,2 ,  . . ., to be functions of x1 alone, thus from 
(3.10) we see that yl is similarly a function of x1 only: it is a constant over each 
section. With this knowledge we can easily obtain the first-order expression for 
the cross-sectional area A(x):  

A @ )  = Ao+€hB0r1(x1) + 0 ( € 2 ) .  

That is, 
A(X)/h2 =Ao/h2 + E . Bo/h. rl(xl) + O(@) 

= “o+€b,y1(x1) +O(€2)  

= a, + sal(xl) + O(e2), (3.12) 

say. The integrated continuity equation for Q, equation (2.5), gives 

al+aoq; = 0 a t  order E ,  (3.13) 

and from this, (3.9) and (3.10) we have 

av cg a -(1,z1) =-= <, 
ay1 sh 

(3.14) 

giving the speed of infinitesimal longitudinal disturbances 

co = (ghao/bo)+ = (gAo/BoP, 

as obtained by Kelland (1839), and giving the surface boundary condition for 
equation (3.7). 

Equations (3.7), (3.8) and (3.14) constitute a well-posed Neumann problem on 
a constant domain. Solutions to this problem, to give V(yl,zl), are unique to 
within an arbitrary constant; if we can solve the problem for a given cross-section 
we can obtain the variation of velocity over the cross-section relative to that a t  
some fixed point; to obtain actual velocities we still have to solve for yl and ql. 

Introducing the momentum equation (2.7), we eliminate the pressure p(x ,  y, z )  
by substituting the energy equation (2.6): 

(3.15) 

(3.16) 

where 

the cross-sectional area, and 

M(4 = / / A Y d y &  

the first moment of the cross-section about the z axis. This clearly depends on 
the choice of co-ordinate origin, however so does the magnitude of R, and it is 
a simple matter to show that gM(x)  -RA(x) ,  and hence (3.16), is independent of 
the co-ordinate origin. 
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We already have the integrated continuity equation (2.5) for Q: 
n n  

The form of (2.5) and (3.16) suggests the subtraction of T:;Q2/A(x) from (3.16) to 
eliminate leading terms in the series for q3, so that the equation will be in terms of 
the dispersive and nonlinear parts of the expansion for 4. 

Before we make this substitution we have to introduce a symbol for integrated 
quantities. Thus we introduce an integral operator, denoted by I(x), t o  represent 
the integral over the cross-section so that we have, for example, 

= I, V + dl V + €:"I. V + O(e3). (3.17) 

Substituting the expansion (3.6),  

= zc,(x, + w x , )  + €2q2(x1) - sg2v(yl, ~l)q;(~l)) + o(e31, 

into (2.5) and (3.16), after performing the necessary differentiations, integrating 
symbolically by means of the operator I ($ )  and then subtracting @ ~ / A ( I L . )  as 
suggested, we obtain after lengthy manipulations 

s - R A ( ~ ) + ~ M ( ~ ) - $ & ~ / A ( X )  = 0(€3), 

showing the surprising result that the equation is identically satisfied up to and 
including terms in e2. Retracing our steps, adding an extra third-order term for 
completeness into the expansions, e313 into (3.17) and e3q531 + e 2 ~ 2 # 3 2  + ~ c ~ ~ q 5 ~ ~  
into (3.6), and then substituting gives 

S - RA(x) + gM(z)  - $Q2/A(x) = - +a2e2c~h21,q;2(xl) + O(e4), (3.18) 

where 

The variables on the left-hand side are all exact, being in terms of integrals over 
the entire cross-section of the fluid. The differential term 41; is of first order, thus 
we see that any solutions obtained from this differential equation will be offirst- 
order accuracy only. All second- and third-order terms are satisfied identically 

Multiplying through by A(%), substituting (3.13), which connects q; and a,, and 
converting all non-dimensional terms back to their physical counterpart,s now 
that the order of accuracy of each term has been recognized, we have 

$&21plA,73Ak2(x) + g M ( x ) A ( x )  -RA2(x) +XA(x) -$Q2 = O(e4), (3.19) 

47 = ss,.( + El) dY1 dz,. 

to o(E4). 

in which A, (x) is defined by A(z) = A ,  + A,  (x) + O(e2) and 
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3.2. Solution of differential equation 

The coefficient of the differential term may be transformed by the following 
theorem, easily obtained from the divergence theorem: 

We have V2Pl = 1 throughout, aPl/an = 0 on solid boundaries, and 

aPl/an = A,/Bo 

on the surface y = h. Therefore 

= A,(Pl, - Fu). (3.20) 

The term Ip, is a positive-definite integral; the arbitrary constant in the solu- 
tion Pl(y, z )  plays no part because the integral is in terms of the gradient of this 
quantity. Similarly in (3.20) we have the difference between two values, elimi- 
nating the constant. Physically, Ip, represents some measure of the physical 
extent of the cross-section relative to the channel bottom. For a rectangular 
cross-section, Pl = +y2, giving Ip, = QBh3, the second moment of area of the 
channel cross-section about the z axis. The function Pl(y, z )  has also been obtained 
for some more general sections: Peters gave the solution for a semicircle, while 
Peregrine gave that for a triangle: Pl(y, x )  = t ( y 2  + 9). From this solution as well, 
we see that Ip, is roughly related to some second moment of the cross-section. 

From (3.20), we can rewrite the differential equation (3.19) as 

9&2(Fl , - -~a) (A; , ( r ) /A , )a+g~(~)  A($) - R A 2 ( x )  +SA(x)  -+Q2 = O(s4). 

This is quite similar to the equation developed by Benjamin & Lighthill for 
rectangular channels in terms of ~(x), the free-surface elevation. They obtained 

&&2r’2(x)  + 3qr3(x) - Ry2(x) + Sy(x) - -:&2 = 0 

for a channel of unit width, which is easily obtained from the above equation. 
The only real complication in the more general case is that the differential term 
has a coefficient in terms of a Neumann problem on the undisturbed channel 
cross-section, and we have the first moment of area of the variable cross-section 
( M ( x ) )  in one term. This equation has been obtained by, and still represents, 
a momentum balance in the channel obtained by integrating the physical 
quantities over the irregular cross-section. The differential term, as is clearly 
shown by (3.18), represents the dispersion effects, allowing for velocity variation 
over the cross-section. Now, we eliminate M ( x )  by relating it to A(%) to give 
a differential equation in A (x) . 

Writing a Taylor expansion for the width B, about the undisturbed level, we 
have, where y* = y - h, 

~ ( y , )  = ~ , + ~ ; y . + p ; j Y i  + 0 ( € 3 ) ,  
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Now the first-order solution ql is a constant on any cross-section, from (3.10), 
hence we may write for the area 

where A, and A, are contributions to the cross-sectional area by the second- and 
third-order solutions. Substituting for B(y,) and integrating, we obtain 

A = A,  + ~B~hv, + sZ((ah2$Bh + A2) + e3((Qh3vz B;I + A,) + O(e4). 

Similarly we write, for the first moment about the z axis, 

= A,y + "2B,r, + @[gi?y;(hB; + B,) +hAJ 

+ ~ 3 [ + h 3 g ( f r h ~ ; ~ + ~ ; )  + ~ A ~ + ~ A , ~ , ]  + 0 ( € 4 ) .  

Now we can invert the series for A ,  and substituting into this expression gives 

M = A,g+h(A-A,)- t  2B,(A-A,)2-zz ( A  -A0)3+O(e4). (3.21) 

The terms in A,, A, and B1, have disappeared but B; remains in the third-order 
term: we must limit our attention to channels which are not so shallow that this 
term is of a lower order, and which have B;I similarly not large. 

Equation (3.21) suggests the use of A ,  = A -Ao  as the area variable; substi- 
tuting this and (3.21) into the differential equation (3.19) yields 

1 1 B; 

8Q2 (PiB - Pi,,) ( A  ;E / A  o)2 + A$ (g/2Bo - gB; A 0/6B!) 

+ A$(gh + gAo/2Bo - A) + A  *(gAoh + gAojj - 2RAo + S )  
+ ( g ~ ; j j - ~ ~ ; + ~ ~ , - h ~ 2 )  = 0 ( € 4 ) ,  (3.22) 

giving a differential equation for A*(%) in terms of the invariants of the flow 
&, R and X, and the geometrical parameters of the channel A,, B,, Bh, h, 5 and 
Pm -plA. We have now found the direct equivalent of the Benjamin & Lighthill 
equation, but with more complicated coefficients; importantly, the non- 
differential terms are in the form of a cubic, so that we can use the same physical 
arguments as Benjamin & Lighthill. This will be done in $4, meanwhile we study 
the terms of the equation as follows. 

Multiplying through by Bo/gA& we can write (3.22) as 

h(&2-%/sA30) (PIB -PI,) + ( A  (it - &B6Ao/% 
+ ( A  */ACJ2 (+ + hBo/Ao - RBolgAo) 

+ ( A  */A,)  (hB,/A, + BBOIAO - 2RB,/gA, +f lBo/g4)  
+ ( ~ ~ o / A o - ~ B o / g A o + S B o / g A ~ -  +QzBO/gAi) = O(e4). (3.23) 

We have made the equation dimensionless, in terms of the following quantities. 
(a)  Variables: 

d = A*/A,, 5 = xB,/A,. 
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( b )  Geometrical parameters of the channel cross-section: 
8, = BA.Ao/B& a measure of the bank slope a t  the undisturbed waterline. 
8, = hBo/A,, a measure of the non-rectangularity of the cross-section by area. 
O3 = (h-g)/(+Ao/Bo), a measure of non-rectangularity by the first moment of 

area about the undisturbed waterline. 
8, = ( ~ l B - ~ l A ) / ( A o / B o ) z ,  in terms of the solution of the Neumann problem, 

which is some measure of the second moment of the cross-section relative 
to the bottom. 

(c) Physical quantities associated with the flow: 

q = Q(B,/qA;)*, r = RB,/gA,, s = SBO/qAE. 

Throughout this non-dimensionalization, as throughout this work, the funda- 
mental importance of the hydraulic mean depth is obvious. 

On examining (3.23) we see that it is convenient to redefine r and s as 

Substituting the newly defined quantities into (3.23) we have 

p264(dd/d()2 i- d3( I - 46,) + d2( 1 - 2r) + 4 2 s  - 44 
+(2s-2r-q2) = O(e4). (3.24) 

This equation will be discussed more fully in 3 4; at this point we proceed to an 
analytical solution. 

If the cubic in (3.24) has the roots y1 2 yz > y,, we obtain one of the following 
two solutions, depending on the sign of the coefficient of d3. When this is positive, 
the more usual case, we have 

d = Yz + (Y1- 7 2 )  cn2 (4 4, 

where 

The other case, when 8, > 3, is given by 

(3.25) 

(3.26) 

Having obtained solutions to the governing differential equation, the cross- 
sectional area has less significance than the elevation of the free surface, so we 
convert, using the first-order relationship 

ehhY,(x,) = 7 * ( 4  = (.AO/BO)J46), 
showing that to this order the free-surface elevation varies as cn2 (at, k), giving 
a cnoidal wave form. 

The second case (3.26) is a wave of depression, having the usual en2 shape, but 
with sharper troughs than crests, showing that the normal tendency of nonlinear 
waves to have sharper crests has been more than offset by the geometrical 
characteristics of the channel. Peregrine (1968) has given examples of channels 
having this property. 
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To the first-order accuracy of the present analysis there is no change in the 
free-surface elevation across the channel. We can, however, obtain the second- 
order cross-channel variation using the equations already derived. In  (3.1 l), 
which is valid for all x1 on the surface yl = 1, only q2 and V (  1, zl) are functions 
of zl. Thus we separate v2 into constant and variable parts on a particular 
cross-section: 

T 2  = T21(?1) + T22(% 4, 
and, equating the terms in (3.11) which are functions of x l ,  

giving E2q22(Xl,zl) = -€r/;cr2v(1,z1). 

Thus we have '?j' = h + chq1 + E2h722 + o(c2), 

which, converting to physical variables, gives 

r(x, 4 = h + r * ( 4  -P,(h, 4 T a x )  + O(C22), (3.27) 

where q* = dA,/B,, obtained from (3.25) or (3.26). Thus we have a fist-order 
solution q *(x) which is constant across the channel, and varies as en2(& k) along 
the channel, and a second-order solution which gives the variation across the 
channel. At the order of approximation used throughout the analysis, vzl(x1) 
cannot be obtained, so the error term is of second order as shown. The solution 
Pl(h,z) includes an arbitrary constant: we set this so that the minimum value 
of Pl on the surface is zero; all cross-channel variation occurs relative to this 
point. 

4. Discussion 
4.1. Physical interpretation of the governing differential equation 

While the solutions (3.25) and (3.26) show the variation of the free-surface 
elevation, the role of the physical flow invariants is not as explicit as when 
examined using the differential equation (3.24). We set out to do this, following 
the discussion of Benjamin & Lighthill (1954), who studied cnoidal waves and 
bores in rectangular channels. 

Considering channels of arbitrary cross-section, we note that d is a mono- 
tonically increasing function of wave height, so that an increase in sit' means an 
increase in 7, and we naturally refer to it as a higher wave. 

If we substitute P3(d)  for the polynomial in (3.24), we can write 

q204(d-Qe/dt)2 + 9 3 ( d )  = 0, (4.1) 

where 9,(d) = d3( 1 -+el) + d2( 1 - 2r) + d ( 2 s  - 4r) + 2s - 2r - q2, (4.2) 

noting that the error term O(e4) is ignored henceforth. We can also write P2(sit') 
for the quadratic terms: 

~ ~ ( ~ 2 7  = p 2 ( d )  + sit'3(1 -+el). 
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FIGURE 1. Typical 9, (broken line) and g3 (solid line) curves for given 
channel geometry and flow invariants. 

From (4.1) we can only have solutions when P3 < 0, and we can only have 
waves when there are two distinct roots, between which 8,(d) is negative. This 
is shown by figure 1, on which 9,(d) and Y3(d)  are plotted for a particular 
channel and particular q, r and s. The only region for which waves are possible is 
that contained between the roots y1 and y2, corresponding respectively to crests 
and to troughs. F o r d  < y,, we satisfy the condition g3 < 0, but we cannot have 
solutions, for this corresponds to the depth becoming zero in a finite distance. 

of d3 becomes more clear. 
If this is positive, we have 8, as shown; if it is zero, then P3 becomes 8% and no 
periodic solutions are possible, for the gravitational nonlinearities are cancelled 
by the channel properties, and there are no two roots between which 9, is 
negative. Then, if 1 -& < 0,  we shall have a cubic which has 8, negative 
between roots yz and y,, and we shall have waves where the troughs are sharper 
than the crests, and if a solitary wave exists it will be one of depression, not 
elevation. Conditions where this occurs, where BhA,/Bi > 3, are for channels 
with a large area but small surface width and finite surface slope, as given by 
Peregrine (1968). As this type of channel is seldom encountered, we shall not 
consider it again; in any case the arguments produced here can be used for this 
type as well. 

The Coefficient 1 - 2r of d2 has some significance: if it is zero, 8, reduces to a 
straight line and 9, has only one root, corresponding to uniform flow. As 
r = 8 U2B,/gA0 for all uniform flows, in this case we obtain U2 = gA,/B,, defining 
critical flow, on which no waves are possible and for which d = 0. 

Similarly we can study the coefficients of d1 and do for the uniform flow case. 
From the invariant equations (2.5)-(2.7), written for uniform flow and non- 
dimensionalized as above, 

Using figure 1, the role of the coefficient 1 

q = F ,  r = i F 2 ,  s = F 2 ,  (4.3) 



430 J .  D.  Penton 

FIGURE 2. curves for uniform flow: AA, superontical flow and the 
solitary wave; BB, subcritical flow. 

where F is the Froude number defined for channels of arbitrary cross-section: 

F = U(B,/gA,)*. 

If we substitute (4.3) into (4.2) the coefficients of both d1 and do disappear: 

and we have the roots 
P 3 ( d )  = dz[ l -  P2 + d( 1 - 48,)], (4.4) 

(4.5) d = 0 (repeated), at’ = (P- l)/( I -Q6,). 
As we do not treat 8, > 3 here, we have two cases as shown in figure 2, depending 
on whether F 1. 

If F > I, we have the curve AA,  with d = 0 corresponding to uniform 
supercritical flow. However, the other root yu is possible, and we have a solitary 
wave rising out of the uniform flow. If the amplitude of this wave is a,, then we 
have the first-order geometrical relationship d’ = a,B,/A,, and obtain from 
(4.5) the first-order expression for wave speed 

u = (gA,p,)t i+ra  s ( i -+e , )  + 0 ( € 2 )  (4.6) ( ,A0 1 
and solving (4.1) and (4.4), then converting to 7, the height of the free surface, 

7 = + 0(€2). (4.7) 

This result agrees with Peters (1966) and Peregrine (1968)) and is the particular 
case of 73.25) for uniform supercritical flow, when yz = y3 = 0, giving 7c = 1, with 
en2 (a[ ,  1) = sech2ag. 

The other case, when P < I, is for uniform subcritical flow, when we have the 
curve BB shown in figure 2. Root ySB is not possible, leaving only the root = 0, 
corresponding to uniform flow: finite amplitude waves are not possible. 
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I A 

FIGURE 3. Typical g8 curve for a given channel, showing vertical displacements caused by 
energy and momentum changes. AA, uniform supercritical flow and the solitary wave; 
BB, periodic waves of cnoidal form; CC, uniform subcritical flow. 

4.2. Energy and momentum changes for waves and uniform flows 

The governing differential equation (3.24) has been obtained in terms of energy, 
momentum and discharge. Considering a flow system as a whole, it is of con- 
siderable use in predicting the type of flow or wave system generated on a flow 
by bringing about energy and momentum changes. Examples are bores and 
hydraulic jumps, barriers across the flow such as sluice gates, and changes of 
cross-section. These are all examples where the change occurs rapidly, in which 
case we can quantitatively predict downstream conditions for given upstream 
conditions in terms of intermediate changes, and vice versa. Even in situations 
where the changes occur gradually, we can use the type of plot shown in figures 
1 and 2 to describe the flow qualitatively. 

To illustrate use of the equation, we consider the case of a bore, where we have 
an energy loss in a flow of constant momentum and discharge. Figure 3, in which 
the vertical axis is displaced by unity so that the abscissa is A/Ao = 1 +d, is 
otherwise the same plot as figures 1 and 2. The limitation for the theory to be 
applicable is that waves should be small, that is, &-A, < A,. 

Considering a co-ordinate system in which the bore is stationary? we have 
uniform supercritical flow upstream, as defined by curve A A  touching the axis 
at  A = A,. As we have seen, the only wave possible is a solitary wave, and we do 
not have a proper bore. 

If we lose some energy, however little, at the bore, then the effect will be to 
raise the curve to one like BB in the figure. This is because the coefficient of r is 
- 2( 1 + which is always negative, hence a reduction in r raises the curve, 
Immediately we have the general case, with the free surface defined by (3.25), 
giving periodic waves of cnoidal form, with the maximum and minimum depth 
defined by the roots of BB in figure 3. Importantly, as we shall see later, the 
maximum and minimum are bounded by the limits of the solitary wave. If  we 
lose more energy, the curve is raised further, and the wave amplitude is reduced 
further: if the maximum amount possible is lost, we have the uniform subcritical 
stream of area A,, given by the repeated root of curve CC, which is between 
A,  and &. 

Thus, a cnoidal wave train can be present behind the bore provided that the 
energy dissipated at the bore is between zero and the value corresponding to 
a complete hydraulic jump. 
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Experimental observations (Sandover & Taylor 1962; Peregrine 1969) have 
shown that waves in channels with appreciably sloping sides have a tendency to 
break at the edges, thus if we have a wave system with amplitude defined by the 
roots of BB in figure 3, there may be a continuing tendency for the waves to break 
at  part or all of the crest, losing energy, thereby raising the curve and reducing 
the wave amplitude until no further breaking occurs. 

The above analysis, which predicts the wave form downstream of a bore in 
terms of the energy loss at the bore, which may be anywhere between zero and 
that of a complete hydraulic jump, can be used to explain the scatter in results 
obtained experimentally by Benet & Cunge (1971). They plotted experimental 
results for different values of the ratio Uo/(gh)J, where U, is the absolute velocity 
of flow upstream, and found less scatter where this was zero or small. Also, they 
noted that the critical breaking condition closely depended on the initial flow, as 
measured by the above ratio. This is a clear indication that energy loss in a bore 
is closely related to the upstream flow conditions. We can imagine that a bore 
progressing onto still water, where the absolute velocity of the fluid anywhere in 
the system is small, is much more likely to propagate with little breaking or loss 
than the case of a bore on running water, in which surface irregularities and 
roughness and real-fluid effects all contribute to the development of energy 
losses, breaking and the variability of results. The extreme case is that of a 
stationary bore on supercritical flow emerging from, say, a sluice gate, with a 
greatly enhanced tendency to breaking and loss. 

Accepting then, the variability of energy losses in bores, we explain the 
scatter of recorded wave amplitudes; we have closely related energy loss to wave 
form for given momentum and discharge. The present theory makes no predic- 
tion of these losses for given upstream conditions, but it does enable the down- 
stream waves to be calculated for a given energy loss. This may be compared 
with the theory of Preissmann & Cunge (1967), which assumes that in all bores 
the energy loss is the maximum possible, that based on hydraulic jump theory, 
and that any wave system downstream, assumed to be sinusoidal, must possess 
all of this energy. No allowance is made for variability in the amount of energy 
loss, and hence no explanation can be given for the scatter in experimental results. 

In  this discussion of the applications of the present theory, we have limited our 
attention to a uniform supercritical flow subject to a finite energy loss. The 
theory, and figure 3, are more general than this, and we can study the behaviour 
of uniform flows or of systems of waves in which energy or momentum changes 
occur. If a momentum decrease occurs, for example, when uniform subcritical 
flow passes over a positive step or some other obstacle in the flow, then because 
the coefficient of s in Y3 is 2( I + d), always positive, the curve is lowered and we 
have the development of a wave system. When we cause enough loss, as for a 
sluice gate across the flow, then we pass from uniform subcritical flow to uniform 
supercritical flow. If the downstream conditions are such that this flow cannot be 
supported, if the depth is too great, say, there will be some kind of bore, in which 
case the technique is re-applied to estimate the nature of the flow downstream, 
and so on. 
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4.3. Practical design note 

We include a practical note, concerning the design of channels of non-rectangular 
cross-section in which stationary or travelling bores are expected to occur: the 
present theory shows a simple design criterion. 

As the critical design parameter is the amount of freeboard at the sides of the 
channel, governing the amount of excavation or materials used, we are primarily 
concerned with the maximum water level, rather than wavelength or wave speed. 
From figure 3 we see that the highest water €eve1 possible is that at the crest of 
a solitary wave, corresponding to a bore with no energy loss. For this wave we 
have a first-order expression for the amplitude: 

Thus we have a simple estimate of the necessary freeboard in terms of the Froude 
number, hydraulic mean depth and a dimensionless measure of the side slope. 
This concept, of using the solitary wave as the design criterion, is borne out by 
the results of Sandover & Taylor, who noted that channel friction had little effect 
on the height of the first wave in an undular bore, indicating that losses before 
the first wave had been small, showing that it is close to a solitary wave. 

A factor to be considered in the design of non-rectangular channels is the 
variation of the free-surface elevation across the cross-section as given by (3.27). 
For the type of regular cross-section encountered in practice (e.g. trapezoidal), 
P,(h, z )  appears to be a well-behaved function which has a minimum at the centre 
of the channel and increases towards the banks (Peregrine 1968, 1969). From 
(3.27) we see that for wave crests, where 7 is a maximum and 7: has a maximum 
negative value, that the highest surface elevation occurs a t  the sides ofthe 
channel, providing the design criterion. The quantity 7; is greater for periodic 
waves than for the solitary wave, but as it is a second-order contribution we can 
continue to consider the solitary wave as the worst case. 

Differentiating (4.7), the equation for the solitary wave, and substituting into 
(3.27) we have 

giving the variation across the crest in terms of the solution Pl(y, 2 ) .  An important 
limitation to this consideration of cross-channel variation is that the channel be 
not broad, which will be discussed in the next section. For most types of channel 
encountered in practice, however, (4.8) and (4.9) give a rational design criterion 
for the necessary depth of channel based on the highest possible waves for a given 
operating discharge and channel geometry. 

4.4. Limitations of the theory 

The nonlinear dispersive wave theory presented in 3 3 has several limitations, 
both mathematical and practical. We can only use the theory to describe wave 
systems which are of small amplitude and which are shallow (where the depth 
of flow is small compared with the wavelength). 

28 FLhl 58 
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Applications ofthis theory are limited to channels which are of a regular cross- 
section and which are not broad. Peregrine (1968) has shown that for broad 
channels with sloping sides, the cross-channel variation is of such a magnitude 
that one of the major assumptions (that wave amplitude is small) is violated. 

Conditions at the bank are complicated by two more factors. The waves may 
break at  the banks, giving local energy dissipation, which cannot be studied by 
the present theory. Also, because the local depth is small, nonlinearity is more 
important near the bank. This is a cause of some of the effects noted experi- 
mentally (Sandover & Taylor 1962; Peregrine 1969), for which the present work 
can offer no explanation. These effects include the tendency for waves to be 
unsteady in broad channels, and for the crests to be curved in plan. The occur- 
rence of a ‘fish-tail’ wave pattern, which almost obscures the main waves, 
remains similarly unexplained. 

I wish to thank Prof. Sir James Lighthill for his encouragement, interest and 
assistance throughout, and the Shell Company of Australia for continued support 
in the form of a Shell Postgraduate Scholarship. 
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